\(\int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx\) [344]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 166 \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\frac {(i A+B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b} d}-\frac {(i A-B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b} d}+\frac {2 (3 A b-2 a B) \sqrt {a+b \tan (c+d x)}}{3 b^2 d}+\frac {2 B \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d} \]

[Out]

(I*A+B)*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/d/(a-I*b)^(1/2)-(I*A-B)*arctanh((a+b*tan(d*x+c))^(1/2)/(
a+I*b)^(1/2))/d/(a+I*b)^(1/2)+2/3*(3*A*b-2*B*a)*(a+b*tan(d*x+c))^(1/2)/b^2/d+2/3*B*(a+b*tan(d*x+c))^(1/2)*tan(
d*x+c)/b/d

Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3688, 3711, 3620, 3618, 65, 214} \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\frac {(B+i A) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}-\frac {(-B+i A) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}+\frac {2 (3 A b-2 a B) \sqrt {a+b \tan (c+d x)}}{3 b^2 d}+\frac {2 B \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d} \]

[In]

Int[(Tan[c + d*x]^2*(A + B*Tan[c + d*x]))/Sqrt[a + b*Tan[c + d*x]],x]

[Out]

((I*A + B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/(Sqrt[a - I*b]*d) - ((I*A - B)*ArcTanh[Sqrt[a + b*
Tan[c + d*x]]/Sqrt[a + I*b]])/(Sqrt[a + I*b]*d) + (2*(3*A*b - 2*a*B)*Sqrt[a + b*Tan[c + d*x]])/(3*b^2*d) + (2*
B*Tan[c + d*x]*Sqrt[a + b*Tan[c + d*x]])/(3*b*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3688

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*B*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(d*f
*(m + n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[a^2*A*d*(m +
 n) - b*B*(b*c*(m - 1) + a*d*(n + 1)) + d*(m + n)*(2*a*A*b + B*(a^2 - b^2))*Tan[e + f*x] - (b*B*(b*c - a*d)*(m
 - 1) - b*(A*b + a*B)*d*(m + n))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*
c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&
 !(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3711

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&&  !LeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 B \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d}+\frac {2 \int \frac {-a B-\frac {3}{2} b B \tan (c+d x)+\frac {1}{2} (3 A b-2 a B) \tan ^2(c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{3 b} \\ & = \frac {2 (3 A b-2 a B) \sqrt {a+b \tan (c+d x)}}{3 b^2 d}+\frac {2 B \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d}+\frac {2 \int \frac {-\frac {3 A b}{2}-\frac {3}{2} b B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{3 b} \\ & = \frac {2 (3 A b-2 a B) \sqrt {a+b \tan (c+d x)}}{3 b^2 d}+\frac {2 B \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d}+\frac {1}{2} (-A-i B) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx+\frac {1}{2} (-A+i B) \int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx \\ & = \frac {2 (3 A b-2 a B) \sqrt {a+b \tan (c+d x)}}{3 b^2 d}+\frac {2 B \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d}+\frac {(i A-B) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d}-\frac {(i A+B) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d} \\ & = \frac {2 (3 A b-2 a B) \sqrt {a+b \tan (c+d x)}}{3 b^2 d}+\frac {2 B \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d}+\frac {(A-i B) \text {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}+\frac {(A+i B) \text {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d} \\ & = \frac {(i A+B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b} d}-\frac {(i A-B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b} d}+\frac {2 (3 A b-2 a B) \sqrt {a+b \tan (c+d x)}}{3 b^2 d}+\frac {2 B \tan (c+d x) \sqrt {a+b \tan (c+d x)}}{3 b d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.69 (sec) , antiderivative size = 139, normalized size of antiderivative = 0.84 \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\frac {\frac {3 (i A+B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b}}+\frac {3 (-i A+B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b}}+\frac {2 \sqrt {a+b \tan (c+d x)} (3 A b-2 a B+b B \tan (c+d x))}{b^2}}{3 d} \]

[In]

Integrate[(Tan[c + d*x]^2*(A + B*Tan[c + d*x]))/Sqrt[a + b*Tan[c + d*x]],x]

[Out]

((3*(I*A + B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/Sqrt[a - I*b] + (3*((-I)*A + B)*ArcTanh[Sqrt[a
+ b*Tan[c + d*x]]/Sqrt[a + I*b]])/Sqrt[a + I*b] + (2*Sqrt[a + b*Tan[c + d*x]]*(3*A*b - 2*a*B + b*B*Tan[c + d*x
]))/b^2)/(3*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1948\) vs. \(2(140)=280\).

Time = 0.12 (sec) , antiderivative size = 1949, normalized size of antiderivative = 11.74

method result size
parts \(\text {Expression too large to display}\) \(1949\)
derivativedivides \(\text {Expression too large to display}\) \(4040\)
default \(\text {Expression too large to display}\) \(4040\)

[In]

int(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

A*(2/d/b*(a+b*tan(d*x+c))^(1/2)-1/4/d/b/(a^2+b^2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+
2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2-1/4/d*b/(a^2+b^2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x
+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+1/4/d/b/(a^2+b^2)^(3/2
)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2
*a)^(1/2)*a^3+1/4/d*b/(a^2+b^2)^(3/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(
a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+1/d/b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*
(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+1/d*b/(a^2+b^2)^(1/2)
/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1
/2)-2*a)^(1/2))-1/d/b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b
^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^4-3/d*b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*a
rctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2-2/d*b^3/(a^2
+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(
a^2+b^2)^(1/2)-2*a)^(1/2))+1/4/d/b/(a^2+b^2)*ln(b*tan(d*x+c)+a-(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^
(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2+1/4/d*b/(a^2+b^2)*ln(b*tan(d*x+c)+a-(a+b*tan(d*x+c))^
(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-1/4/d/b/(a^2+b^2)^(3/2)*ln(
b*tan(d*x+c)+a-(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(
1/2)*a^3-1/4/d*b/(a^2+b^2)^(3/2)*ln(b*tan(d*x+c)+a-(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b
^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+1/d/b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*
tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+1/d*b/(a^2+b^2)^(1/2)/(2*(
a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2
*a)^(1/2))-1/d/b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(
1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^4-3/d*b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan
((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2-2/d*b^3/(a^2+b^2)
^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b
^2)^(1/2)-2*a)^(1/2)))+2*B/d/b^2*(1/3*(a+b*tan(d*x+c))^(3/2)-a*(a+b*tan(d*x+c))^(1/2)-b^2*(1/4/(a^2+b^2)^(1/2)
*(-1/2*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a
^2+b^2)^(1/2))+2*((a^2+b^2)^(1/2)-a)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^
2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)))+1/4/(a^2+b^2)^(1/2)*(1/2*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*ln
(b*tan(d*x+c)+a-(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))+2*((a^2+b^2)^(1/2)-a)/(2
*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)
-2*a)^(1/2)))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1725 vs. \(2 (134) = 268\).

Time = 0.31 (sec) , antiderivative size = 1725, normalized size of antiderivative = 10.39 \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \]

[In]

integrate(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/6*(3*b^2*d*sqrt(-((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2
)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + 2*A*B*b + (A^2 - B^2)*a)/((a^2 + b^2)*d^2))*log((2*(A^3*B + A*B^3)*a - (A^4
 - B^4)*b)*sqrt(b*tan(d*x + c) + a) + ((A*a^3 + B*a^2*b + A*a*b^2 + B*b^3)*d^3*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B
 - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + (2*A*B^2*a^2 - (3*A^2*B - B^3)*a
*b + (A^3 - A*B^2)*b^2)*d)*sqrt(-((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*
B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + 2*A*B*b + (A^2 - B^2)*a)/((a^2 + b^2)*d^2))) - 3*b^2*d*sqrt(-
((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2
 + b^4)*d^4)) + 2*A*B*b + (A^2 - B^2)*a)/((a^2 + b^2)*d^2))*log((2*(A^3*B + A*B^3)*a - (A^4 - B^4)*b)*sqrt(b*t
an(d*x + c) + a) - ((A*a^3 + B*a^2*b + A*a*b^2 + B*b^3)*d^3*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^
4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + (2*A*B^2*a^2 - (3*A^2*B - B^3)*a*b + (A^3 - A*B^2)*
b^2)*d)*sqrt(-((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a
^4 + 2*a^2*b^2 + b^4)*d^4)) + 2*A*B*b + (A^2 - B^2)*a)/((a^2 + b^2)*d^2))) - 3*b^2*d*sqrt(((a^2 + b^2)*d^2*sqr
t(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - 2*A*
B*b - (A^2 - B^2)*a)/((a^2 + b^2)*d^2))*log((2*(A^3*B + A*B^3)*a - (A^4 - B^4)*b)*sqrt(b*tan(d*x + c) + a) + (
(A*a^3 + B*a^2*b + A*a*b^2 + B*b^3)*d^3*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)
*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - (2*A*B^2*a^2 - (3*A^2*B - B^3)*a*b + (A^3 - A*B^2)*b^2)*d)*sqrt(((a^2 +
 b^2)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)
*d^4)) - 2*A*B*b - (A^2 - B^2)*a)/((a^2 + b^2)*d^2))) + 3*b^2*d*sqrt(((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4
*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - 2*A*B*b - (A^2 - B^2)*a)/
((a^2 + b^2)*d^2))*log((2*(A^3*B + A*B^3)*a - (A^4 - B^4)*b)*sqrt(b*tan(d*x + c) + a) - ((A*a^3 + B*a^2*b + A*
a*b^2 + B*b^3)*d^3*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b
^2 + b^4)*d^4)) - (2*A*B^2*a^2 - (3*A^2*B - B^3)*a*b + (A^3 - A*B^2)*b^2)*d)*sqrt(((a^2 + b^2)*d^2*sqrt(-(4*A^
2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - 2*A*B*b - (A
^2 - B^2)*a)/((a^2 + b^2)*d^2))) + 4*(B*b*tan(d*x + c) - 2*B*a + 3*A*b)*sqrt(b*tan(d*x + c) + a))/(b^2*d)

Sympy [F]

\[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \tan ^{2}{\left (c + d x \right )}}{\sqrt {a + b \tan {\left (c + d x \right )}}}\, dx \]

[In]

integrate(tan(d*x+c)**2*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(1/2),x)

[Out]

Integral((A + B*tan(c + d*x))*tan(c + d*x)**2/sqrt(a + b*tan(c + d*x)), x)

Maxima [F]

\[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \tan \left (d x + c\right )^{2}}{\sqrt {b \tan \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*tan(d*x + c)^2/sqrt(b*tan(d*x + c) + a), x)

Giac [F(-1)]

Timed out. \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 11.91 (sec) , antiderivative size = 2981, normalized size of antiderivative = 17.96 \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \]

[In]

int((tan(c + d*x)^2*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(1/2),x)

[Out]

2*atanh((32*A^2*b^2*((-16*A^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(
1/2)*(a + b*tan(c + d*x))^(1/2))/((16*A^3*a*b^3*d^3)/(a^2*d^4 + b^2*d^4) - (4*A*b^3*d^2*(-16*A^4*b^2*d^4)^(1/2
))/(a^2*d^5 + b^2*d^5)) + (8*a*b^2*((-16*A^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (A^2*a*d^2)/(4*(a^2*d^4
 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-16*A^4*b^2*d^4)^(1/2))/((16*A^3*a*b^5*d^5)/(a^2*d^4 + b^2*d^4
) - (4*A*b^5*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (16*A^3*a^3*b^3*d^5)/(a^2*d^4 + b^2*d^4) - (4*
A*a^2*b^3*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) - (32*A^2*a^2*b^2*d^2*((-16*A^4*b^2*d^4)^(1/2)/(16
*(a^2*d^4 + b^2*d^4)) - (A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*A^3*a*b^5*
d^5)/(a^2*d^4 + b^2*d^4) - (4*A*b^5*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (16*A^3*a^3*b^3*d^5)/(a
^2*d^4 + b^2*d^4) - (4*A*a^2*b^3*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)))*((-16*A^4*b^2*d^4)^(1/2)/(
16*(a^2*d^4 + b^2*d^4)) - (A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2) - atan((a*b^2*((-16*B^4*b^2*d^4)^(1/2)/(1
6*(a^2*d^4 + b^2*d^4)) + (B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-16*B^4*b^2*d^
4)^(1/2)*8i)/((16*B^3*a^2*b^4*d^5)/(a^2*d^4 + b^2*d^4) - 16*B^3*a^2*b^2*d - 16*B^3*b^4*d + (16*B^3*a^4*b^2*d^5
)/(a^2*d^4 + b^2*d^4) + (4*B*a^3*b^2*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (4*B*a*b^4*d^4*(-16*B^
4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) - (B^2*b^2*((-16*B^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) + (B^2*a*d
^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*32i)/((16*B^3*a^2*b^2*d^3)/(a^2*d^4 + b^2*d^4) -
 (16*B^3*b^2)/d + (4*B*a*b^2*d^2*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) + (B^2*a^2*b^2*d^2*((-16*B^4*b^
2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) + (B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*
32i)/((16*B^3*a^2*b^4*d^5)/(a^2*d^4 + b^2*d^4) - 16*B^3*a^2*b^2*d - 16*B^3*b^4*d + (16*B^3*a^4*b^2*d^5)/(a^2*d
^4 + b^2*d^4) + (4*B*a^3*b^2*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (4*B*a*b^4*d^4*(-16*B^4*b^2*d^
4)^(1/2))/(a^2*d^5 + b^2*d^5)))*((-16*B^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) + (B^2*a*d^2)/(4*(a^2*d^4 +
b^2*d^4)))^(1/2)*2i - atan((B^2*b^2*((B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)) - (-16*B^4*b^2*d^4)^(1/2)/(16*(a^2*d^
4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*32i)/((16*B^3*b^2)/d - (16*B^3*a^2*b^2*d^3)/(a^2*d^4 + b^2*d^4
) + (4*B*a*b^2*d^2*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) + (a*b^2*((B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4))
 - (-16*B^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-16*B^4*b^2*d^4)^(1/2)*
8i)/(16*B^3*b^4*d + 16*B^3*a^2*b^2*d - (16*B^3*a^2*b^4*d^5)/(a^2*d^4 + b^2*d^4) - (16*B^3*a^4*b^2*d^5)/(a^2*d^
4 + b^2*d^4) + (4*B*a^3*b^2*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (4*B*a*b^4*d^4*(-16*B^4*b^2*d^4
)^(1/2))/(a^2*d^5 + b^2*d^5)) - (B^2*a^2*b^2*d^2*((B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)) - (-16*B^4*b^2*d^4)^(1/2
)/(16*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*32i)/(16*B^3*b^4*d + 16*B^3*a^2*b^2*d - (16*B^3*a
^2*b^4*d^5)/(a^2*d^4 + b^2*d^4) - (16*B^3*a^4*b^2*d^5)/(a^2*d^4 + b^2*d^4) + (4*B*a^3*b^2*d^4*(-16*B^4*b^2*d^4
)^(1/2))/(a^2*d^5 + b^2*d^5) + (4*B*a*b^4*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)))*((B^2*a*d^2)/(4*(
a^2*d^4 + b^2*d^4)) - (-16*B^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2)*2i - 2*atanh((8*a*b^2*(- (-16*A^
4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1
/2)*(-16*A^4*b^2*d^4)^(1/2))/((16*A^3*a*b^5*d^5)/(a^2*d^4 + b^2*d^4) + (4*A*b^5*d^4*(-16*A^4*b^2*d^4)^(1/2))/(
a^2*d^5 + b^2*d^5) + (16*A^3*a^3*b^3*d^5)/(a^2*d^4 + b^2*d^4) + (4*A*a^2*b^3*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2
*d^5 + b^2*d^5)) - (32*A^2*b^2*(- (-16*A^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (A^2*a*d^2)/(4*(a^2*d^4 +
 b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*A^3*a*b^3*d^3)/(a^2*d^4 + b^2*d^4) + (4*A*b^3*d^2*(-16*A^4*
b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) + (32*A^2*a^2*b^2*d^2*(- (-16*A^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4))
 - (A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*A^3*a*b^5*d^5)/(a^2*d^4 + b^2*d
^4) + (4*A*b^5*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (16*A^3*a^3*b^3*d^5)/(a^2*d^4 + b^2*d^4) + (
4*A*a^2*b^3*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)))*(- (-16*A^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d
^4)) - (A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2) + (2*A*(a + b*tan(c + d*x))^(1/2))/(b*d) + (2*B*(a + b*tan(c
 + d*x))^(3/2))/(3*b^2*d) - (2*B*a*(a + b*tan(c + d*x))^(1/2))/(b^2*d)